1001-market.ru

Преобразование эл энергии в другие виды энергии. Преобразование энергии: определение, виды и процесс передачи. Возможные схемы преобразования энергии

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, – невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля - сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Эту цепочку в которой происходит преобразование энергии из одной формы в другую можно было бы продолжать бесконечно.

Электрическая энергия вырабатывается на электрических станциях и передается потребителям главным образом в виде переменного трехфазного тока промышленной частоты 50 Гц. Однако как в промышленности, так и на транспорте имеются установки, для питания которых переменный ток частотой 50 Гц непригоден.
Вопросами, связанными с преобразованием электрической энергии из одного ее вида в другой, занимается область науки и техники, получившая название преобразовательной техники (или энергетической электроники). К числу основных видов преобразования электрической энергии относятся:

    1. Выпрямление переменного тока - преобразование переменного тока (обычно промышленной частоты) в постоянный ток. Этот вид преобразования получил наибольшее развитие, так как часть потребителей электрической энергии может работать только на постоянном токе (электрохимические и электрометаллургические установки, линии передачи постоянного тока, электролизные ванны, заряжаемые аккумуляторные батареи, радиотехническая аппаратура и т.д.), другие же потребители имеют на постоянном токе лучшие характеристики, чем на переменном токе (регулируемые электродвигатели).
    2. Инвертирование тока - преобразование постоянного тока в переменный. Инвертор применяется в тех случаях, когда источник энергии генерирует постоянный ток (электромашинные генераторы постоянного тока, аккумуляторные батареи и другие химические источники тока, солнечные батареи, магнитогидродинамические генераторы и т.д.), а для потребителей нужна энергия переменного тока. В ряде случаев инвертирование тока необходимо при других видах преобразования электрической энергии (преобразование частоты, преобразование числа фаз).
    3. Преобразование частоты - преобразование переменного тока одной частоты (обычно 50 Гц) в переменный ток другой частоты. Такое преобразование необходимо для питания регулируемых электроприводов переменного тока, установок индукционного нагрева и плавки металлов, ультразвуковых устройств и т. д.
    4. Преобразование числа фаз. В ряде случаев встречается необходимость в преобразовании трехфазного тока в однофазный (например, для питания дуговых электропечей) или, наоборот, однофазного в трехфазный. Так, на электрифицированном транспорте используется контактная сеть однофазного переменного тока, а на электровозах используются вспомогательные машины трехфазного тока. В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной связью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное.

3. Преобразование постоянного тока одного напряжения в постоянный ток другого напряжения (преобразование постоянного напряжения). Подобное преобразование необходимо, например, на ряде подвижных объектов, где источником электроэнергии является аккумуляторная батарея или другой источник постоянного тока низкого напряжения, а для питания потребителей требуется более высокое постоянное напряжение (например, источники питания радиотехнической или электронной аппаратуры).
Существуют и некоторые другие виды преобразования электрической энергии (например, формирование определенной кривой переменного напряжения), в частности, формирование мощных импульсов тока, которые находят применение в специальных установках, регулируемое преобразование переменного напряжения. Все виды преобразований осуществляют с использованием силовых ключевых элементов. Основные типы полупроводниковых ключей - диоды, силовые биполярные транзисторы, тиристоры, запираемые тиристоры, транзисторы с полевым управлением.
Преобразователи на тиристорах принято делить на две группы: ведомые и автономные. В первых периодический переход тока с одного вентиля на другой (коммутация тока) осуществляется под действием переменного напряжения какого-либо внешнего источника. Если таким источником является сеть переменного тока, говорят о преобразователе, ведомом сетью. К таким преобразователям относятся: выпрямители, ведомые сетью (зависимые) инверторы, непосредственные преобразователи частоты, преобразователи числа фаз, преобразователи переменного напряжения. Если внешним источником напряжения, обеспечивающим коммутацию, является машина переменного тока (например, синхронный генератор или двигатель), преобразователь называют ведомым машиной.
Автономные преобразователи выполняют функции преобразования формы или регулирования напряжения (тока) путем изменения состояния управляемых силовых ключевых элементов под действием сигналов управления. К автономным преобразователям относятся импульсные регуляторы постоянного и переменного напряжения, некоторые виды инверторов напряжения.
Традиционно силовые вентильные преобразователи использовались для получения выпрямленного напряжения промышленных сетей частотой 50 Гц и для получения переменного напряжения (однофазного или трехфазного) при питании от источника постоянного напряжения. Для этих преобразователей (выпрямителей и инверторов) используют диоды и тиристоры, коммутируемые с частотой сети. Форма выходного напряжения и тока определяется линейной частью схемы и фазовой модуляцией угла регулирования.
Выпрямление и инвертирование продолжают оставаться ведущим способом преобразования электрической энергии, однако способы преобразования претерпели значительные изменения и их разновидности стали гораздо многочисленнее.
Появление новых типов силовых полупроводниковых вентилей, близких к идеальному управляемому ключевому элементу, существенно изменило подход к построению вентильных преобразователей. Получившие распространение в последние годы запираемые тиристоры (GTO - gate turn off thirystor) и биполярные транзисторы с изолированным затвором (БТИЗ - IGBT - insolated gate bipolar transistor) успешно перекрывают диапазон мощностей до сотен и тысяч киловатт, их динамические свойства непрерывно совершенствуются, а стоимость с ростом выпуска снижается. Поэтому они успешно вытеснили обычные тиристоры с узлами принудительной коммутации. Области применения импульсных преобразователей напряжения с новыми классами приборов также расширились. Быстро развиваются мощные импульсные регуляторы как для повышения, так и для понижения постоянного напряжения питания; импульсные преобразователи часто используются в системах утилизации энергии возобновляемых источников (ветер, солнечная радиация).

Большие вложения делаются в производство энергии с использованием энергосберегающих технологий, когда возобновляемые первичные источники используются либо для возврата энергии в сеть, либо для подзарядки накопителя (аккумулятора) в установках с повышенной надежностью энергоснабжения. Появляются новые классы преобразователей для электроприводов с вентильно-индукторными двигателями (SRD - switched reluctanse drive). Эти преобразователи представляют собой многоканальные (число каналов обычно от трех до восьми) коммутаторы, обеспечивающие поочередно подключение обмоток статора двигателя с регулируемыми частотой и напряжением. Импульсные преобразователи получают широкое распространение в источниках питания бытовой аппаратуры, зарядных устройствах, сварочных агрегатах и целом ряде новых применений (пускорегулирующие устройства осветительных установок, электрофильтры и пр.).
Помимо совершенствования элементной базы силовых преобразовательных цепей на стратегию решения схемотехнических задач оказало огромное влияние развитие микроконтроллерных устройств и цифровых методов обработки информации.

Современная наука объясняет существование электричества скоплениями зарядов противоположных знаков. В природе вырабатывается невероятное количество электричества. Силы трения в атмосфере создают огромные пространства из грозовых облаков. Между облаками, с поверхностью земли возникают напряжения в миллионы вольт. А несколько минут грозы с молниями эквивалентны по электрической мощности продолжительной работе большой электростанции.

Но молний может и не быть. Однако электроэнергия всё равно витает в пространстве между небом и землёй.

  • Очевидно, что напряжение это первый и основной параметр энергии электричества.

В природе существуют только медленно изменяющиеся и почти мгновенно исчезающие напряжения. Гроза постепенно набирает силу, зарядов от трения перемещающихся слоёв воздуха становится всё больше. Напряжение между облаками и поверхностью земли увеличивается.

Если движение воздушных масс в определённый момент прекратится, напряжение постепенно уменьшится. Если нет – разряд молнии моментально «обнулит» напряжение.

  • Очевидно, что электрический ток, который имеет вид молнии, является вторым параметром электрической энергии.

По мере развития науки люди научились моделировать атмосферные электрические процессы, придумав электростатическую, или как её называют иначе электрофорную машину:

Эта машина стала первым преобразователем механической энергии в электроэнергию. Однако преобразование это не удалось сделать обратимым. Хотя машина и была источником напряжения и тока, проблема состояла в том, что сделать дальнейшие преобразования электрической энергии не получалось. Но со временем наука выявила ещё одну причину возникновения электрических зарядов. Не только трение, но и магнитное поле оказалось способным создавать электричество.

Это открытие оказалось полностью определённым развитием технологий. Когда появились металлическая проволока и постоянный магнит, взаимодействие которых в природе не существует, стало возможным открытие электромагнитной индукции. При этом выяснилось, что получаемая энергия электричества напрямую связана со скоростью взаимного перемещения магнита и провода.

  • Очевидно, что частота является третьим параметром энергии электричества.

После открытия Фарадеем явления электромагнитной индукции были изобретены различные электрические машины, в том числе и преобразователи электрической энергии. Первыми из них стали трансформаторы , которые сделали возможной передачу энергии электричества по проводам на значительные расстояния. Оказалось, что переменное напряжение на концах обмотки катушки равномерно распределяется между её витками. На каждом витке получается одинаковое по величине напряжение.

Поэтому количество витков обмотки определит напряжение, которое можно использовать для питания новой электрической цепи. Выяснилось также и то, что дополнительный виток охватывающий сердечник катушки вне основной обмотки имеет на своих концах такое же напряжение, как и виток основной обмотки. Такие катушки, охватывающие общий магнитопровод, стали называть трансформаторами. Если все катушки при этом соединялись между собой в последовательную цепь, такое устройство назвали автотрансформатором.

Автотрансформатор при одинаковых параметрах преобразования электроэнергии оказывается эффективнее трансформатора, поскольку в нём существует электрическая связь между обмотками. Поэтому он может передать потребителю большую электрическую мощность. В трансформаторе между обмотками существует только электромагнитная связь.

Но эта особенность обеспечивает полную электрическую изоляцию обмоток друг от друга. По этой причине трансформаторы широко используются во всех электрических устройствах, питающихся от электрической сети для получения безопасного электропитания этих устройств. Трансформаторы позволяют изменять лишь напряжение и ток, оставляя их частоту без какого-либо изменения. В этом качестве они применяются до сих пор. А в дальних системах электроснабжения трансформаторы достигли огромных размеров. Один из таких агрегатов показан на изображении ниже:

Но после появления трансформаторов проявилась ещё одна возможность преобразования электроэнергии.

Катушки

Оказалось, что любая катушка запасает энергию в электромагнитном поле. Оно существует некоторое время после того, как по обмотке катушки перестаёт течь электроток. А на концах обмотки катушки в течение этого времени продолжает существовать напряжение. Такое явление стали называть как ЭДС самоиндукции. Выяснилось также и то, что величина ЭДС самоиндукции зависит от скорости отключения электротока в катушке.

Чем быстрее уменьшается ток, тем больше напряжение на концах обмотки. Такой преобразователь электроэнергии получил своё название по фамилии своего изобретателя и стал называться «катушкой Румкорфа», изображение которой показано ниже слева. На таком же принципе работает классическая система зажигания автомобильного бензинового двигателя.

Однако преобразовать частоту напряжения и тока длительное время можно было только при помощи вращения. Синхронный двигатель , который вращался с частотой, определяемой частотой питающего напряжения, вращал генератор. Для увеличения частоты можно было либо использовать повышающий обороты редуктор, либо увеличивать число полюсов генератора, либо и то и другое вместе. Аналогично решалась и проблема получения выпрямленного тока. Механические контакты, например, коллектора двигателя пропускали только одну половину периода тока. Эти импульсы поступали в общую электрическую цепь, и таким образом получался выпрямленный ток обоих полупериодов.

Определяющий вклад в развитие преобразования электроэнергии внесли электронные приборы. Они позволили создавать выпрямители и преобразователи частоты без подвижных частей, обеспечивая параметры электроэнергии недостижимые для устройств, созданных на механических принципах. Стало возможным создание мощных высокочастотных генераторов, именуемых инверторами. Увеличение частоты позволило в несколько раз уменьшить размеры трансформаторов.

Инверторы

Инверторы получили дальнейшее развитие с появлением мощных высоковольтных полупроводниковых приборов – транзисторов и тиристоров . С их появлением преобразование электроэнергии на высокой частоте охватило почти все устройства с источниками вторичного электропитания. Инверторные схемы стали широко применяться для электронных балластов газоразрядных ламп. При этом достигалось более высокое качество света при значительной экономии электроэнергии.

Наиболее весомым моментом в развитии преобразования электроэнергии стали инверторы и выпрямители для высоковольтных линий электропередачи. Такие схемы дальнего электроснабжения начали применяться достаточно давно с появлением ртутных вентилей – мощных специализированных электровакуумных приборов.

Затем они были вытеснены более эффективными тиристорами и транзисторами. Полупроводниковые преобразователи электроэнергии позволяют обеспечить передачу электрической мощности в 3,15 гигаватт/час на расстояние 2400 км в современной системе электроснабжения в Бразилии. За такими системами передачи электроэнергии будущее. ЛЭП работающие на постоянном токе лишены реактивного сопротивления и потерь электроэнергии, связанных с переменным напряжением и током.

В них нет и других процессов и явлений, очень мешающих совместной работе нескольких электрогенерирующих и передающих систем в единой схеме электроснабжения. Но трение и электромагнетизм не единственные процессы, которые используются для преобразования электроэнергии. Примерно в те же годы открытия явления электромагнитной индукции был обнаружен пьезоэлектрический эффект.

В результате нашлась группа минералов, а впоследствии были искусственно созданы материалы с пьезоэлектрическими свойствами. Эти свойства заключаются в преобразовании механического воздействия, приложенного к образцу пьезоэлектрического материала, в электрические импульсы. Но обратное преобразование электрических импульсов в механические деформации образца также возможно. На основе таких образцов можно изготовить трансформатор без обмоток и магнитных полей в сердечнике и вне его.

Такой трансформатор будет увеличивать приложенное напряжение во много раз при минимальных размерах и весе. Это будет просто керамическая пластина с припаянными проводками.

При этом получаемая мощность не будет большой. Но выигрыш в размерах и себестоимости по сравнению с электромагнитным трансформатором будет существенной. Такие пьезоэлектрические трансформаторы применяются в источниках вторичного электропитания. Также все современные курильщики пользуются зажигалками, в которых искра создаётся миниатюрным пьезоэлектрическим трансформатором.

Дальнейшее развитие преобразователей электроэнергии это битва за увеличение частоты напряжения и тока. Этот процесс связан с необходимостью создания новых полупроводниковых приборов и материалов. В сочинениях некоторых писателей фантастов упоминается энергетический луч, используемый вместо ЛЭП . Возможно, их пророчества таки сбудутся.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

На тему: Способы преобразований различных видов энергий в энергетике

Студент: Мырза А.

Преподаватель: Джумартбаева Н.

Кентау-2015

Введение

1. Способы преобразование различных видов энергий

1.1 Виды преобразования электрической энергии

1.2 Воздействие различных источников энергии на окружающую среду

2. Способы получение электрический энергий

2.1 Электростанции

Заключение

Список использованной литературы

Введение

Энергия, от греческого слова energeia - деятельность или действие, - общая мера различных видов движения и взаимодействия. В естествознании различают следующие виды энергии: механическую, тепловую, электрическую, химическую, магнитную, электромагнитную, ядерную, гравитационную. Современная наука не исключает существование и других видов энергии. Энергия измеряется в Джоулях (Дж). Для измерения тепловой энергии используют калории, 1 кал=4.18 Дж, электрическую энергию измеряют в кВт*час=3.6*106Дж, механическая энергия измеряется в кг*м, 1кг*м=9.8 Дж. Кинетическая энергия - результат изменения состояния движения материальных тел. Потенциальная энергия - результат изменения положения частей данной системы. Механическая энергия - это энергия, связанная с движением объекта или его положением, способность совершать механическую работу. ток переменный напряжение

Электроэнергия энергия - одна из совершенных видов энергии. Ее широкое применение обусловлено следующими факторами: Получение в больших количествах вблизи месторождения ресурсов и водных источников;·Возможность транспортировки на дальние расстояния с относительно небольшими потерями; Способность трансформации в другие виды энергии: механическую, химическую, тепловую, световую; Отсутствие загрязнения окружающей среды; Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию, используя ветроэнергетические установки, солнечные батареи, малые газогенераторы. Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива. Способы преобразования энергии: Человечество стремилось с начала своей истории овладеть энергией в своих интересах. Этапы "овладения" энергией: огонь, мускульная сила животных, сила ветра, воды, энергия пара электроэнергия ядерная энергия. Во Вселенной происходят процессы преобразования энергии из одного вида в другой в огромных масштабах. Человечество находится в самом начале пути понимания этих процессов. Закон сохранения энергии - энергия не создается и не уничтожается, она переходит из одного вида в другой. Различают энергию упорядоченного движения (свободную - механическую, химическую, электрическую, электромагнитную, ядерную) и энергию хаотического движения - теплоту. В настоящее время нет способов непосредственного превращения ядерной энергии в электрическую и механическую, нужно вначале пройти стадию превращения энергии в тепловую, а затем в механическую и электрическую. Преобразование первичной энергии во вторичную осуществляется на станциях:

· На тепловой электрической станции ТЭС - тепловая;

· Гидроэлектростанции ГЭС - механическая (энергия движения воды);

· Гидроаккумулирующая станция ГАЭС - механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

· Атомная электростанция АЭС - атомная (энергия ядерного топлива);

· Приливной электростанции ПЭС - приливов. В РБ более 95% энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

1. Конденсационные тепловые электростанции КЭС, предназначены для выработки только электрической энергии;

2. Теплоэлектроцентрали ТЭЦ, на которых осуществляется комбинированное производство электрической и тепловой энергии. Способы получения и преобразования энергии. Механическая энергия преобразуется в тепловую - трением, в химическую - путем разрушения структуры вещества, сжатия, в электрическую - путем изменения электромагнитного поля генератора. Тепловая энергия преобразуется в химическую, в кинетическую энергию движения, а эта - в механическую (турбина), в электрическую (термо э.д.с.) Химическая энергия может быть преобразована в механическую (взрыв), в тепловую (тепло реакции), в электрическую (батарейки).

1 . Способы преобразование различных видов энергий

1.1 Виды преобразования электрической энергии

Вопросами, связанными с преобразованием электрической энергии из одного ее вида в другой, занимается область науки и техники, получившая название преобразовательной техники (или энергетической электроники). К числу основных видов преобразования электрической энергии относятся:

1. Выпрямление переменного тока - преобразование переменного тока (обычно промышленной частоты) в постоянный ток. Этот вид преобразования получил наибольшее развитие, так как часть потребителей электрической энергии может работать только на постоянном токе (электрохимические и электрометаллургические установки, линии передачи постоянного тока, электролизные ванны, заряжаемые аккумуляторные батареи, радиотехническая аппаратура и т.д.), другие же потребители имеют на постоянном токе лучшие характеристики, чем на переменном токе (регулируемые электродвигатели).

2. Инвертирование тока - преобразование постоянного тока в переменный. Инвертор применяется в тех случаях, когда источник энергии генерирует постоянный ток (электромашинные генераторы постоянного тока, аккумуляторные батареи и другие химические источники тока, солнечные батареи, магнитогидродинамические генераторы и т.д.), а для потребителей нужна энергия переменного тока. В ряде случаев инвертирование тока необходимо при других видах преобразования электрической энергии (преобразование частоты, преобразование числа фаз).

3. Преобразование частоты - преобразование переменного тока одной частоты (обычно 50 Гц) в переменный ток другой частоты. Такое преобразование необходимо для питания регулируемых электроприводов переменного тока, установок индукционного нагрева и плавки металлов, ультразвуковых устройств и т. д.

4. Преобразование числа фаз. В ряде случаев встречается необходимость в преобразовании трехфазного тока в однофазный (например, для питания дуговых электропечей) или, наоборот, однофазного в трехфазный. Так, на электрифицированном транспорте используется контактная сеть однофазного переменного тока, а на электровозах используются вспомогательные машины трехфазного тока. В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной связью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное.

3. Преобразование постоянного тока одного напряжения в постоянный ток другого напряжения (преобразование постоянного напряжения). Подобное преобразование необходимо, например, на ряде подвижных объектов, где источником электроэнергии является аккумуляторная батарея или другой источник постоянного тока низкого напряжения, а для питания потребителей требуется более высокое постоянное напряжение (например, источники питания радиотехнической или электронной аппаратуры).

Существуют и некоторые другие виды преобразования электрической энергии (например, формирование определенной кривой переменного напряжения), в частности, формирование мощных импульсов тока, которые находят применение в специальных установках, регулируемое преобразование переменного напряжения. Все виды преобразований осуществляют с использованием силовых ключевых элементов. Основные типы полупроводниковых ключей - диоды, силовые биполярные транзисторы, тиристоры, запираемые тиристоры, транзисторы с полевым управлением.

Преобразователи на тиристорах принято делить на две группы: ведомые и автономные. В первых периодический переход тока с одного вентиля на другой (коммутация тока) осуществляется под действием переменного напряжения какого-либо внешнего источника. Если таким источником является сеть переменного тока, говорят о преобразователе, ведомом сетью. К таким преобразователям относятся: выпрямители, ведомые сетью (зависимые) инверторы, непосредственные преобразователи частоты, преобразователи числа фаз, преобразователи переменного напряжения. Если внешним источником напряжения, обеспечивающим коммутацию, является машина переменного тока (например, синхронный генератор или двигатель), преобразователь называют ведомым машиной.

Автономные преобразователи выполняют функции преобразования формы или регулирования напряжения (тока) путем изменения состояния управляемых силовых ключевых элементов под действием сигналов управления. К автономным преобразователям относятся импульсные регуляторы постоянного и переменного напряжения, некоторые виды инверторов напряжения.

Традиционно силовые вентильные преобразователи использовались для получения выпрямленного напряжения промышленных сетей частотой 50 Гц и для получения переменного напряжения (однофазного или трехфазного) при питании от источника постоянного напряжения. Для этих преобразователей (выпрямителей и инверторов) используют диоды и тиристоры, коммутируемые с частотой сети. Форма выходного напряжения и тока определяется линейной частью схемы и фазовой модуляцией угла регулирования.

Выпрямление и инвертирование продолжают оставаться ведущим способом преобразования электрической энергии, однако способы преобразования претерпели значительные изменения и их разновидности стали гораздо многочисленнее.

Появление новых типов силовых полупроводниковых вентилей, близких к идеальному управляемому ключевому элементу, существенно изменило подход к построению вентильных преобразователей. Получившие распространение в последние годы запираемые тиристоры (GTO - gate turn off thirystor) и биполярные транзисторы с изолированным затвором (БТИЗ - IGBT - insolated gate bipolar transistor) успешно перекрывают диапазон мощностей до сотен и тысяч киловатт, их динамические свойства непрерывно совершенствуются, а стоимость с ростом выпуска снижается. Поэтому они успешно вытеснили обычные тиристоры с узлами принудительной коммутации. Области применения импульсных преобразователей напряжения с новыми классами приборов также расширились. Быстро развиваются мощные импульсные регуляторы как для повышения, так и для понижения постоянного напряжения питания; импульсные преобразователи часто используются в системах утилизации энергии возобновляемых источников (ветер, солнечная радиация).

Большие вложения делаются в производство энергии с использованием энергосберегающих технологий, когда возобновляемые первичные источники используются либо для возврата энергии в сеть, либо для подзарядки накопителя (аккумулятора) в установках с повышенной надежностью энергоснабжения. Появляются новые классы преобразователей для электроприводов с вентильно-индукторными двигателями (SRD - switched reluctanse drive). Эти преобразователи представляют собой многоканальные (число каналов обычно от трех до восьми) коммутаторы, обеспечивающие поочередно подключение обмоток статора двигателя с регулируемыми частотой и напряжением. Импульсные преобразователи получают широкое распространение в источниках питания бытовой аппаратуры, зарядных устройствах, сварочных агрегатах и целом ряде новых применений (пускорегулирующие устройства осветительных установок, электрофильтры и пр.).

Помимо совершенствования элементной базы силовых преобразовательных цепей на стратегию решения схемотехнических задач оказало огромное влияние развитие микроконтроллерных устройств и цифровых методов обработки информации.

1.2 Воздействие различных источни ков энергии на окружающую среду

Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени "ответственны" за усиливающийся парниковый эффект и выпадение кислотных осадков. Они, вместе с транспортом, поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО), около 50% двуокиси серы, 35% - окислов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности. В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа-400 млн. доз, магния -1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах. Это, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем. Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества. Вместе с тем влияние энергетики на среду и ее обитателей в большей мере зависит от вида используемых энергоносителей (топлива). Наиболее чистым топливом является природный газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф. Хотя в настоящее время значительная доля электроэнергии производится за счет относительно чистых видов топлива (газ, нефть), однако закономерной является тенденция уменьшения их доли. По имеющимся прогнозам, эти энергоносители потеряют свое ведущее значение уже в первой четверти XXI столетия. Здесь уместно вспомнить высказывание Д.И. Менделеева о недопустимости использования нефти как топлива: "нефть не топливо - топить можно и ассигнациями". Не исключена вероятность существенного увеличения в мировом энергобалансе использования угля. По имеющимся расчетам, запасы углей таковы, что они могут обеспечивать мировые потребности в энергии в течение 200-300 лет Возможная добыча углей, с учетом разведанных и прогнозных запасов, оценивается более чем в 7 триллионов тонн. При этом более 1/3 мировых запасов углей находится на территории России. Поэтому закономерно ожидать увеличения доли углей или продуктов их переработки (например, газа) в получении энергии, а, следовательно, и в загрязнении среды. Угли содержат от 0,2 до десятков процентов серы в основном в виде пирита, сульфата закисного железа и гипса. Имеющиеся способы улавливания серы при сжигании топлива далеко не всегда используются из-за сложности и дороговизны. Поэтому значительное количество ее поступает и, по-видимому, будет поступать в ближайшей перспективе в окружающую среду. Серьезные экологические проблемы связаны с твердыми отходами ТЭС - золой и шлаками. Хотя зола в основной массе улавливается различными фильтрами, все же в атмосферу в виде выбросов ТЭС ежегодно поступает около 250 млн. т. мелкодисперсных аэрозолей.

Последние способны заметно изменять баланс солнечной радиации у земной поверхности. Они же являются ядрами конденсации для паров воды и формирования осадков, а попадая в органы дыхания человека и других организмов, вызывают различные респираторные заболевания. ТЭС - существенный источник подогретых вод, которые используются здесь как охлаждающий агент. Эти воды нередко попадают в реки и другие водоемы, обусловливая их тепловое загрязнение и сопутствующие ему цепные природные реакции (размножение водорослей, потерю кислорода, гибель гидробионтов, превращение типично водных экосистем в болотные и т. п.).

Ядерная энергетика до недавнего времени рассматривалась как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать, столько же энергии, сколько сжигание 1000 тонн каменного угля. До середины 80-х годов человечество в ядерной энергетике видело один из выходов из энергетического тупика. Только за 20 лет (с середины 60-х до середины 80-х годов) мировая доля энергетики, получаемой на АЭС, возросла практически с нулевых значений до 15-17%, а в ряде стран она стала превалирующей. Ни один другой вид энергетики не имел таких темпов роста. До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Имеются данные, что стоимость таких ликвидационных работ составляет от 1/6 до 1/3 от стоимости самих АЭС. Некоторые параметры воздействия АЭС и ТЭС на среду представлены в таблице 8.3. При нормальной работе АЭС выбросы радиоактивных элементов в среду крайне незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС одинаковой мощности. К маю 1986 г. 400 энергоблоков, работавших в мире и дававших более 17% электроэнергии, увеличили природный фон радиоактивности не более чем на 0,02%. До Чернобыльской катастрофы в нашей стране никакая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, и то по нерадиационным причинам, погибло 17 человек. После 1986 г. главную экологическую опасность АЭС стали связывать с возможностью аварий. Хотя вероятность их на современных АЭС и невелика, но она и не исключается. К наиболее крупным авариям такого плана относится случившаяся на четвертом блоке Чернобыльская АЭС. Неизбежный результат работы АЭС - тепловое загрязнение вод. На единицу получаемой энергии здесь оно в 2-2,5 раза больше, чем на ТЭС, где значительно больше тепла отводится в атмосферу. Выработка 1 млн. кВт электроэнергии на ТЭС дает 1,5 км 3 подогретых вод, на АЭС такой же мощности объем подогретых вод достигает 3-3,5 км 3. Следствием больших потерь тепла на АЭС является более низкий коэффициент их полезного действия по сравнению с ТЭС. На последних он равен 35-40%, а на АЭС - только 30-31 %. В целом можно назвать следующие воздействия АЭС на среду: - разрушение экосистем и их элементов (почв, грунтов, водоносных структур и т. п.) в местах добычи руд (особенно при открытом способе); - изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для электростанции мощностью 1000 МВт требуется пруд-охладитель площадью около 800-900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 м и высотой, равной 40-этажному зданию; - изъятие значительных объемов вод из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие источники, в них наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у гидробионтов; - не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях. Электромагнитные (ЭМ) поля токов промышленной частоты, наиболее опасные места - у трансформаторных подстанций, под линиями электропередач высокого напряжения. Интенсивность излучения пропорциональна четвертой степени частоты колебаний электромагнитного поля. Действие ЭМ поля вызывает нарушение функций нервной и сердечно-сосудистой систем, изменяет кровяное давление.

2. Способы получение электрический энергий

2.1 Электростанции

Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. Большинство электростанций, будь то гидроэлектростанции, тепловые (АЭС, ТЭС и прочие) или ветроэлектростанции, используют для своей работы энергию вращения вала генератора.

1. Атомная электростанция

2. Тепловая электростанция

3. Волновая электростанция

4. Геотермальная электростанция

5. Приливная электростанция

6. Гидроаккумилирующая электростанция

Атомная электростанция

Атомная электроста нция (АЭС) - ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом), предназначенная для производства электрической энергии. Во второй половине 40-х гг., ещё до окончания работ по созданию первой советской атомной бомбы (её испытание состоялось 29 августа 1949 года), советские учёные приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого сразу же стала электроэнергетика. В 1948 г. по предложению И.В. Курчатова и в соответствии с заданием партии и правительства начались первые работы по практическому применению энергии атома для получения электроэнергии. В мае 1950 года близ посёлка Обнинское Калужской области начались работы по строительству первой в мире АЭС.В 1950 году в США был создан реактор EBR-I недалеко от города Арко, штат Айдахо. Данный реактор 20 декабря 1951 года в ходе эксперимента выработал пригодное для использования электричество мощностью 800 Вт. После этого мощность реактора была повышена для обеспечения электроэнергией станции, на которой находился реактор. Это даёт право называть данную станцией первой экспериментальной АЭС, но при этом она не была подключена к энергетической сети.

Тепловая электростанция

Тепловая электростанция -- электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

(ТЭС), энергетическая установка, на которой в результате сжигания органического топлива получают тепловую энергию, преобразуемую затем в электрическую. ТЭС основной тип электрических станций, доля вырабатываемой ими электроэнергии составляет в промышленно развитых странах 70-80 % (в России в 2000 г. ок. 67 %). Тепловая энергия на ТЭС используется для нагрева воды и получения пара (на паротурбинных электростанциях) или для получения горячих газов (на газотурбинных). Для получения тепла органическое топливо сжигают в котло-агрегатах ТЭС.

Волновая электростанция

Волновая электростанция - электростанция, расположенная в водной среде, целью которой является получение электроэнергии из кинетической энергии волн. Потенциал волн оценивается в более 2 млн МВт. Места с наибольшим потенциалом для волновой энергетики - западное побережье Европы, северное побережье Великобритании и Тихоокеанское побережье Северной, Южной Америки, Австралии и Новой Зеландии, а также побережье Южной Африки.

Первая волновая электростанция расположена в районе Агусадора, Португалия на расстоянии 5 километров от берега. Была официально открыта 23 сентября 2008 года португальским министром экономики. Мощность данной электростанции составляет 2,25 МВт, этого хватает для обеспечения электроэнергией примерно 1600 домов. Первоначально предполагалось, что станция войдёт в эксплуатацию в 2006 году, но развёртывание электростанции произошло на 2 года позже планируемого срока. Проект электростанции принадлежит шотландской компании Pelamis Wave Power, которая в 2005 году заключила контракт с португальской энергетической компанией Enersis на строительство волновой электростанции в Португалии. Стоимость контракта составила 8 миллионов евро.

Геотермальная электростанция

Геотермамльная электростамнция (ГеоЭС или ГеоТЭС) - вид электростанций, которые вырабатывают электрическую энергию из тепловой энергии подземных источников (например, гейзеров).

Геотермальная энергия - это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 °C каждые 36 метров. Это тепло доставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно для обогрева домов и зданий, так и для производства электроэнергии. Термальные регионы имеются во многих частях мира. По различным подсчетам, температура в центре Земли составляет, минимум, 6 650 °C. Скорость остывания Земли примерно равна 300--350 °C в миллиард лет. Земля выделяет 42·1012 Вт тепла, из которых 2 % поглощается в коре и 98 % - в мантии и ядре. Современные технологии не позволяют достичь тепла, которое выделяется слишком глубоко, но и 840 000 000 000 Вт (2 %) доступной геотермальной энергии могут обеспечить нужды человечества на долгое время. Области вокруг краев континентальных плит являются наилучшим местом для строительства геотермальных станций, потому что кора в таких зонах намного тоньше.

Приливная электростанция

Приливная электростанция (ПЭС) - особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 18 метров.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция. Существует мнение, что работа приливных электростанций тормозит вращение Земли, что может привести к негативным экологическим последствиям. Однако ввиду колоссальной массы Земли кинетическая энергия ее вращения (~1029 Дж) настолько велика, что работа приливных станций суммарной мощностью 1000 ГВт будет увеличивать длительность суток лишь на ~10?14 секунды в год, что на 9 порядков меньше естественного приливного торможения(~2·10?5 с в год).

Гидроаккумилирующая электростанция

ГАЭС использует в своей работе либо комплекс генераторов и насосов, либо обратимые гидроэлектроагрегаты, которые способны работать как в режиме генераторов, так и в режиме насосов. Во время ночного провала энергопотребления ГАЭС получает из энергосети дешёвую электроэнергию и расходует её на перекачку воды в верхний бьеф (насосный режим). Во время утреннего и вечернего пиков энергопотребления ГАЭС сбрасывает воду из верхнего бьефа в нижний, вырабатывает при этом дорогую пиковую электроэнергию, которую отдаёт в энергосеть (генераторный режим).В крупных энергосистемах большую долю могут составлять мощности тепловых и атомных электростанций, которые не могут быстро снижать выработку электроэнергии при ночном снижении энергопотребления или же делают это с большими потерями. Этот факт приводит к установлению существенно большей коммерческой стоимости пиковой электроэнергии в энергосистеме, по сравнению со стоимостью электроэнергии, вырабатываемой в ночной период. В таких условиях использование ГАЭС экономически эффективно и повышает как эффективность использования других мощностей (в том числе и транспортных), так и надёжность энергоснабжения.

Заключение

Электрическая энергия вырабатывается на электрических станциях и передается потребителям главным образом в виде переменного трехфазного тока промышленной частоты 50 Гц. Однако как в промышленности, так и на транспорте имеются установки, для питания которых переменный ток частотой 50 Гц непригоден.

Вопросами, связанными с преобразованием электрической энергии из одного ее вида в другой, занимается область науки и техники, получившая название преобразовательной техники (или энергетической электроники).

Энергия, от греческого слова energeia - деятельность или действие, - общая мера различных видов движения и взаимодействия. В естествознании различают следующие виды энергии: механическую, тепловую, электрическую, химическую, магнитную, электромагнитную, ядерную, гравитационную. Современная наука не исключает существование и других видов энергии. Энергия измеряется в Джоулях (Дж).

Список использованной л итературы

1. Справочник технолога-машиностроителя. В 2-х т. Т.2/под ред. А.М. Дальского, А.Г. Косиловой, Р.К. Мещерякова, А.Г. Суслова. -5-е изд., перераб. и доп. - М.: Машиностроение-1, 2001. -912 с.: ил.

2. Анурьев В.И. Справочник конструктора-машиностроителя: В 3-х т. Т. 1. - 8-е изд., перераб. и доп. Под ред. И.Н. Жестковой. - М.: Машиностроение, 2001. -920 с.: ил.

3. Анурьев В.И. Справочник конструктора-машиностроителя: В 3-х т. Т. 2. - 8-е изд., перераб. и доп. Под ред. И.Н. Жестковой. - М.: Машиностроение, 2001. -920 с.: ил.

4. Дунаев П.Ф., Леликов О.П. Детали машин. Курсовое проектирование: Учеб. Пособие для машиностроит. спец. техникумов. - М.: Высш. Шк., 1984. -336 с.: ил.

Размещено на Allbest.ru

...

Подобные документы

    Расчёт параметров цепи постоянного тока методом уравнений Кирхгофа, контурных токов и методом узловых напряжений. Расчёт баланса мощностей. Расчёт параметров цепи переменного тока методом комплексных амплитуд. Преобразование соединения сопротивлений.

    курсовая работа , добавлен 14.04.2015

    Преобразование переменного тока в постоянный. Способы регулирования напряжения выпрямителей. Блочная схема тиристорного преобразователя серии "КЕМТОР". Определение параметров согласующего трансформатора. Расчет внешних характеристик преобразователя.

    курсовая работа , добавлен 12.03.2013

    Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа , добавлен 10.05.2013

    Особенности управления электродвигателями переменного тока. Описание преобразователя частоты с промежуточным звеном постоянного тока на основе автономного инвертора напряжения. Динамические характеристики САУ переменного тока, анализ устойчивости.

    курсовая работа , добавлен 14.12.2010

    Исследование неразветвленной и разветвленной электрических цепей постоянного тока. Расчет нелинейных цепей постоянного тока. Исследование работы линии электропередачи постоянного тока. Цепь переменного тока с последовательным соединением сопротивлений.

    методичка , добавлен 22.12.2009

    Анализ электрических цепей постоянного тока. Расчёт токов с помощью законов Кирхгофа. Расчёт токов методом контурных токов. Расчёт токов методом узлового напряжения. Исходная таблица расчётов токов. Потенциальная диаграмма для контура с двумя ЭДС.

    курсовая работа , добавлен 02.10.2008

    Источник питания как устройство, предназначенное для снабжения аппаратуры электрической энергией. Преобразование переменного напряжения промышленной частоты в пульсирующее постоянное напряжение с помощью выпрямителей. Стабилизаторы постоянного напряжения.

    реферат , добавлен 08.02.2013

    История высоковольтных линий электропередач. Принцип работы трансформатора - устройства для изменения величины напряжения. Основные методы преобразования больших мощностей из постоянного тока в переменный. Объединения элетрической сети переменного тока.

    отчет по практике , добавлен 19.11.2015

    Электронные устройства для преобразования энергии переменного тока в энергию постоянного тока. Классификация выпрямителей, их основные параметры. Работа однофазной мостовой схемы выпрямления. Диаграммы токов и напряжений двухполупериодного выпрямителя.

    реферат , добавлен 19.11.2011

    Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

Обеспечение нужд человечества достаточным количеством энергии - одна из ключевых задач, которые стоят перед современной наукой. В связи с повышением энергозатратности процессов, направленных на поддержание базовых условий существования общества, возникают острые проблемы не только генерации больших объемов энергии, но и сбалансированной организации систем ее распределения. И тема преобразования энергии имеет ключевое значение в данном контексте. От этого процесса зависит коэффициент выработки полезного энергетического потенциала, а также уровень затрат на обслуживание технологических операций в рамках используемой инфраструктуры.

Общие сведения о технологии преобразования

Необходимость использования разных связана с различиями в процессах, для которых требуется питающий ресурс. Тепло требуется для отопления, механическая энергия - для силовой поддержки движения механизмов, а свет - для освещения. Электричество можно назвать универсальным источником энергии и с точки зрения ее преобразования, и в плане возможностей применения в разных сферах. В качестве исходной энергии обычно используются природные явления, а также искусственно организованные процессы, способствующие генерации того же тепла или механического усилия. В каждом случае требуется определенный вид оборудования или сложного технологического сооружения, в принципе позволяющего обеспечивать преобразование энергии в нужную для конечного или промежуточного потребления форму. Причем среди задач преобразователя выделяется не только трансформация как перевод энергии из одного вида в другой. Зачастую данный процесс служит и для изменения некоторых параметров энергии без ее трансформации.

Преобразование как таковое может быть одноступенчатым или многоступенчатым. Кроме того, например, работа солнечных генераторов на фотокристаллических элементах обычно рассматривается как трансформация энергии света в электричество. Но вместе с этим возможно и преобразование тепловой энергии, которую Солнце отдает грунту в результате нагрева. Геотермальные модули размещаются на определенной глубине в земле и посредством специальных проводников наполняют энергетическим запасам аккумуляторы. В простой схеме преобразования геотермальная система обеспечивает накопление энергии тепла, которая отдается отопительному оборудованию в чистом виде с базовой подготовкой. В сложной структуре задействуется тепловой насос в единой группе с конденсаторами тепла и компрессорами, которые обеспечивают преобразование тепла и электроэнергию.

электрической энергии

Существуют разные технологические методы извлечения первичной энергии из естественных природных явлений. Но еще больше возможностей для изменения свойств и форм энергии дают аккумулированные энергоресурсы, поскольку они хранятся в удобном для трансформации виде. К наиболее распространенным формам преобразования энергии можно отнести операции излучения, нагрева, механического и химического воздействия. В наиболее сложных системах применяются процессы молекулярного распада и многоуровневые химические реакции, в которых объединяется несколько этапов преобразования.

Выбор конкретного способа трансформации будет зависеть от условий организации процесса, вида изначальной и конечной энергии. Среди самых распространенных видов энергии, которые в принципе участвуют в процессах преобразования можно выделить лучистую, механическую, тепловую, электрическую и химическую энергию. Как минимум, данные ресурсы успешно эксплуатируются в промышленности и бытовом хозяйстве. Отдельного внимания заслуживают косвенные процессы преобразования энергии, которые являются производными той или иной технологической операции. К примеру, в рамках металлургического производства требуется выполнение операций нагрева и охлаждения, в результате которых вырабатывается пар и тепло как производные, но не целевые ресурсы. В сущности, это отходные продукты переработки, которые также находят применение, подвергаются трансформации или использованию в рамках этого же предприятия.

Преобразование энергии тепла

Один из старейших с точки зрения освоения и самых важных для поддержания жизнедеятельности человека энергетических источников, без которых невозможно представить жизнь современного общества. В большинстве случаев тепло преобразуется в электроэнергию, причем простая схема такой трансформации не требует подключения промежуточных этапов. Однако в тепловых и атомных электростанциях в зависимости от условий их работы может применяться этап подготовки с переводом тепловой в механическую энергию, что требует дополнительных затрат. Сегодня все чаще для преобразования тепловой энергии в электричество используются термоэлектрические генераторы прямого действия.

Сам процесс трансформации происходит в специальном веществе, которое сжигается, выделяет тепло и в дальнейшем выступает источником генерации тока. То есть термоэлектрические установки могут рассматриваться как источники электроэнергии с нулевым циклом, так как их работа запускается еще до появления базовой тепловой энергии. В качестве основного ресурса выступают топливные элементы - как правило, газовые смеси. Они сжигаются, в результате чего происходит нагрев теплораспределительной металлической пластины. В процессе отвода тепла через специальный генераторный модуль с полупроводниковыми материалами происходит преобразование энергии. Электрический ток генерируется радиаторной установкой, подключенной к трансформатору или аккумулятору. В первом варианте энергия сразу поступает к потребителю в готовом виде, а во втором - накапливается и отдается по мере надобности.

Генерация тепловой энергии из механической

Также один из самых распространенных способов получения энергии в результате преобразования. Суть его заключается в способности тел отдавать тепловую энергию в процессе совершения работы. В простейшем виде данную схему трансформации энергии демонстрирует пример с трением двух деревянных предметов, в результате чего возникает огонь. Однако для использования данного принципа с ощутимой практической пользой требуются специальные устройства.

В бытовом хозяйстве преобразование механической энергии имеет место в системах отопления и водоснабжения. Это сложные технические конструкции с магнитопроводом и шихтованным сердечником, подключенным к замкнутым электропроводящим контурам. Также внутри рабочей камеры данной конструкции проходят трубы отопления, которые нагреваются под действием совершаемой работы от привода. Недостатком данного решения можно назвать необходимость подключения системы к электросети.

В промышленности используются более мощные преобразователи с жидким теплоносителем. Источник механической работы подключается к замкнутым резервуарам с водой. В процессе движения исполнительных органов (турбин, лопастей или других элементов конструкции) внутри контура создаются условия для вихреобразования. Это происходит в моменты резкого торможения лопастей. Кроме нагрева в данном случае повышается и давление, что облегчает процессы циркуляции воды.

Большинство современных технических агрегатов работает на принципах электромеханики. Синхронные и асинхронные электрические машины и генераторы используются в транспорте, станочном оборудовании, промышленных инженерных узлах и прочих силовых установках разного назначения. То есть электромеханические виды преобразования энергии применимы и к генераторному, и к двигательному режимам работы в зависимости от текущих требований приводной системы.

В обобщенном виде любую электрическую машину можно рассматривать как систему взаимно перемещающихся магнитно-связанных электрических цепей. К подобным явлениям также относят гистерезис, насыщение, высшие гармоники и магнитные потери. Но в классическом представлении относить их к аналогам электрических машин можно лишь в случае, если речь идет о динамических режимах, когда система работает в рамках энергетической инфраструктуры.

В основе системы электромеханического преобразования энергии лежит принцип двух реакций с двухфазными и трехфазными компонентами, а также метод вращающихся магнитных полей. Ротор и статор двигателей выполняют механическую работу под действием магнитного поля. В зависимости от направления движения заряженных частиц устанавливается режим работы - в качестве мотора или генератора.

Генерация электричества из химической энергии

Совокупный химический источник энергии относится к традиционным, однако методы его преобразования не так распространены в силу экологических ограничений. Сама по себе химическая энергия в чистом виде практически не используется - по крайней мере, в виде концентрированных реакций. В то же время естественные химические процессы окружают человека повсюду в виде высоко- или низкоэнергетических связок, которые проявляются, например, при горении с выделением тепла. Тем не менее, преобразование химической энергии целенаправленно организуется в некоторых отраслях промышленности. Обычно создаются условия для высокотехнологичного горения в плазменных генераторах или газовых турбинах. Типичным реактивом данных процессов является топливный элемент, который и способствует получению электрической энергии. С точки зрения КПД подобные преобразования не так выгодны по сравнению с альтернативными способами генерации электроэнергии, так как часть полезного тепла рассеивается даже в современных плазменных установках.

Преобразование энергии солнечного излучения

Как способ преобразования энергии процесс обработки солнечного света уже в скором будущем может стать самым востребованным в энергетике. Связано это с тем, что даже в наши дни каждый домовладелец теоретически может приобрести оборудование для преобразования солнечной энергии в энергию электрическую. Ключевой особенностью данного процесса является бесплатность аккумулируемого солнечного света. Другое дело, что это не делает процесс полностью лишенным расходов. Во-первых, затраты потребуются на техническое обслуживание солнечных аккумуляторов. Во-вторых, и сами генераторы такого типа стоят недешево, поэтому первичное вложение в организацию собственной мини-энергостанции пока могут себе позволить немногие.

Что же представляет собой солнечный генератор энергии? Это комплект фотоэлектрических панелей, выполняющих преобразование энергии солнечных лучей в электричество. Сам принцип этого процесса во многом схож с работой транзистора. В качестве основного материала для изготовления фотоэлементов используется кремний в разных вариантах. Например, устройство для преобразования энергии Солнца может быть поли- и монокристаллическим. Второй вариант предпочтительнее по рабочим характеристикам, но стоит дороже. В обоих случаях происходит освещение фотоэлемента, при котором активизируются электроды и в процессе их движения вырабатывается электродинамическая сила.

Паровые турбины могут применяться в промышленности как способ трансформации энергии в приемлемую форму, так и в качестве самостоятельного генератора электричества или тепла из специально направляемых потоков условного газа. Далеко не одни турбинные машины используются как устройства преобразования электрической энергии в составе с паровыми генераторами, но их конструкция оптимально подходит для организации этого процесса с высоким КПД. Простейшее техническое решение - турбина с лопатками, к которой подключаются сопла с подаваемым паром. По мере движения лопастей происходит вращение электромагнитной установки внутри аппарата, выполняется механическая работа и вырабатывается ток.

Некоторые конструкции турбин имеют специальные расширения в виде ступеней, где происходит превращение механической энергии пара в кинетическую. Данная особенность устройства обуславливается не столько интересами повышения производительности преобразования энергии генератора или необходимостью выработки именно кинетического потенциала, сколько обеспечением возможности гибкой регуляции работы турбины. Расширение в турбине обеспечивает функцию управления, что дает возможность эффективной и безопасной регуляции объемов генерируемой энергии. К слову, рабочая область расширения, которая включается в процесс преобразования, называется активной ступенью давления.

Способы передачи энергии

Способы трансформации энергии невозможно рассматривать без понятия ее передачи. На сегодняшний день выделяется четыре способа взаимодействия тел, при которых происходит передача энергии, - электрический, гравитационный, ядерный и слабый. Передачу в данном контексте можно рассматривать и как способ обмена, поэтому принципиально разделяют совершение работы при передаче энергии и функцию теплообмена. Какие преобразования энергии предусматривают совершение работы? Типичным примером является механическое усилие, при котором в пространстве происходит перемещение макроскопических тел или отдельных частиц тел. Помимо механической силы также выделяют магнитную и электрическую работу. Ключевым объединяющим свойством практически для всех типов работ является способность к полному количественному преобразованию между собой. То есть электричество трансформируется в механическую энергию, механическая работа в магнитный потенциал и т.д. Теплообмен также является распространенным способом передачи энергии. Он может быть ненаправленным или хаотическим, но в любом случае происходит движение микроскопических частиц. Количество активизированных частиц будет определять объем тепла - полезную теплоту.

Заключение

Переход энергии из одной формы в другую является нормальным, а в некоторых отраслях обязательным условием производственного энергетического процесса. В разных случаях необходимость включения этого этапа может объясняться экономическими, технологическими, экологическими и другими факторами генерации ресурса. При этом, несмотря на разнообразие естественных и искусственно организующихся способов трансформации энергии, подавляющее большинство установок, обеспечивающих процессы преобразования, применяются только для электричества, теплоты и механической работы. Средства для преобразования электрической энергии и вовсе являются самыми распространенными. Электрические машины, обеспечивающие трансформацию механической работы в электроэнергию по принципу индукции, к примеру, используются практически во всех сферах, где задействуют сложные технические устройства, агрегаты и приборы. И эта тенденция не снижается, так как человечество нуждается в постоянном увеличении объемов энергетического производства, что заставляет искать новые источники первичной энергии. На данный момент наиболее перспективными направлениями в энергетике считаются системы генерации того же электричества из механической энергии, производимой Солнцем, ветром и потоками воды в естественной природе.

Загрузка...