1001-market.ru

Канальцевая реабсорбция норма. II.Канальцевая реабсорбция. Регуляция каналъцевой реабсорбции

Почки в человеческом теле выполняют ряд функций: это и регуляция объема крови и межклеточной жидкости, и удаление продуктов распада, и стабилизация кислотно-щелочного баланса, и регуляция водно-солевого равновесия и так далее. Все эти задачи решаются благодаря мочеобразованию. Канальцевая реабсорбция – один из этапов этого процесса.

Канальцевая реабсорбция

За сутки почки пропускают до 180 л первичной мочи. Эта жидкость из тела не выводится: так называемый фильтрат проходит сквозь канальцы, где практически вся жидкость всасывается, а необходимые для жизнедеятельности вещества – аминокислоты, микроэлементы, витамины, возвращаются в кровь. Продукты распада и обмена удаляются со вторичной мочой. Объем ее намного меньше – около 1,5 л за сутки.

Эффективность почки как органа во многом определяется эффективностью канальцевой реабсорбции. Чтобы представить себе механизм процесса, необходимо разобраться в строении – почечной единицы.

Строение нефрона

«Рабочая» клетка почки состоит из следующих частей.

  • Почечное тельце – клубочковая капсула, внутри расположены капилляры.
  • Проксимальный извитый каналец.
  • Петля Генле – складывается из нисходящей и восходящей части. Тонкая нисходящая располагается в мозговом веществе, изгибается под 180 градусов с тем, чтобы подняться в корковое вещество до уровня клубочка. Эта часть формирует восходящую тонкую и толстую части.
  • Дистальный извитый каналец.
  • Конечный отдел – короткий фрагмент, соединенный с собирательной трубкой.
  • Собирательная трубка – размещается в мозговом веществе, отводит вторичную мочу в почечную лоханку.

Общий принцип размещения таков: в корковом веществе размещаются почечные клубочки, проксимальный и дистальный канальцы, в мозговом – нисходящие и толстые восходящие части и собирательные трубки. Во внутреннем мозговом веществе остаются тонкие отделы, собирательные трубки.
На видео строение нефрона:

Механизм реабсорбции

Для осуществления канальцевой реабсорбции задействуются молекулярные механизмы, аналогичные перемещению молекул через плазматические мембраны: диффузия, эндоцитоз, пассивный и активный транспорт и так далее. Самый значимый – активный и пассивный транспорт.

Активный – проводится против электрохимического градиента. Для его реализации требуется энергия и специальные транспортные системы.

Рассматривают 2 вида активного транспорта:

  • Первично-активный – в ход идет энергия, выделяющаяся при расщеплении аденозинтрифосфорной кислоты. Таким образом перемещаются, например, ионы натрия, кальция, калия, водорода.
  • Вторично-активный – на перенос энергия не тратится. Движущей силой выступает разница в концентрации натрия в цитоплазме и просвете канальца.Переносчик обязательно включает в себя ион натрия. Таким способом через мембрану проходит глюкоза и аминокислоты. Разница в количестве натрия – меньше в цитоплазме, чем снаружи, объясняется выводом натрия в межклеточную жидкость с участием АТФ.

После преодоления мембраны комплекс расщепляется на переносчик – специальный белок, ион натрия и глюкозу. Переносчик возвращается в клетку, где готов присоединить следующий ион металла. Глюкоза же из межклеточной жидкости следует в капилляры и возвращается в кровоток. Реабсорбируется глюкоза только в проксимальном отделе, поскольку лишь здесь формируется требуемый переносчик.

Аминокислоты всасываются по аналогичной схеме. А вот процесс реабсорбции белка сложнее: белок поглощается путем пиноцитоза – захвата жидкости клеточной поверхностью, в клетке распадается на аминокислоты, а затем следует в межклеточную жидкость.

Пассивный транспорт – всасывание производится по электрохимическому градиенту и в поддержке не нуждается: например, всасывание ионов хлора в дистальном канальце. Возможно перемещение по концентрационному, электрохимическому, осмотическому градиентам.

На деле реабсорбция производится по схемам, включающим самые разные способы транспортировки. Причем в зависимости от участка нефрона абсорбироваться вещества могут по-разному или не поглощаться вовсе.

Например, вода усваивается в любом отделе нефрона, но разными методами:

  • около 40–45% воды всасывается в проксимальных канальцах по осмотическому механизму – вслед за ионами;
  • 25–28% воды поглощается в петле Генле по поворотно-протипоточному механизму;
  • в дистальных извитых канальцах поглощается до 25% воды. Причем если в двух предыдущих отделах поглощение воды производится вне зависимости от водной нагрузки, то в дистальных процесс регулируется: вода может выводиться со вторичной мочой или удерживаться.

Объем вторичной мочи достигает всего лишь 1% от первичного объема.
На видео процесс реабсорбции:

Движение реабсорбируемого вещества


Различают 2 метода перемещения реабсорбируемого вещества в межклеточную жидкость:

  • парацеллюрный – переход производится через одну мембрану между двумя плотно соединенными клетками. Это, например, диффузия, или перенос с растворителем, то есть, пассивный транспорт;
  • трансцеллюрный – «через клетку». Вещество преодолевает 2 мембраны: люминальную или апикальную, которая отделяет фильтрат в просвете канальца от клеточной цитоплазмы, и базолатеральную, выступающую барьером между интерстициальной жидкостью и цитоплазмой. Хотя бы один переход реализуется по механизму активного транспорта.

Виды

В разных отделах нефрона реализуются разные методы реабсорбции. Поэтому на практике часто используют разделение по особенностям работы:

  • проксимальный отдел – извитая часть проксимального канальца;
  • тонкий – части петли Генле: тонкая восходящая и нисходящая;
  • дистальный – дистальный извитый каналец, соединяющий и толстая восходящая часть петли Генле.

Проксимальная

Здесь поглощается до 2/3 воды, а также глюкоза, аминокислоты, белки, витамины, большое количество ионов кальция, калия, натрия, магния, хлора. Проксимальный каналец – основной поставщик глюкозы, аминокислот и белков в кровь, так что этот этап является обязательным и независим от нагрузки.

Схемы реабсорбции применяются разные, что определяется видом всасываемого вещества.

Глюкоза в проксимальном канальце поглощается практически полностью. Из просвета канальца в цитоплазму она следует через люминальную мембрану посредством контртранспорта. Это вторичный активный транспорт, для которого нужна энергия. Используется та, что выделяется при перемещении иона натрия по электрохимическому градиенту. Затем глюкоза проходит сквозь базолатеральную мембрану методом диффузии: глюкоза накапливается в клетке, что обеспечивает разницу в концентрации.

Энергия нужна при переходе сквозь люминальную мембрану, перенос через вторую мембрану энергетических затрат не требует. Соответственно, главным фактором поглощения глюкозы оказывается первично-активный транспорт натрия.

По такой же схеме реабсорбируются аминокислоты, сульфат, неорганический фосфат кальция, питательные органические вещества.

Низкомолекулярные белки оказываются в клетке посредством пиноцитоза и в клетке распадаются на аминокислоты и дипептиды. Этот механизм не обеспечивает 100% всасывания: часть белка остается в крови, а часть удаляется с мочой – до 20 г в сутки.

Слабые органические кислоты и слабые основания из-за низкой степени диссоциации реабсорбируются методом неионной диффузии. Вещества растворяются в липидном матриксе и поглощаются по концентрационному градиенту. Всасывание зависит от уровня pH: при его уменьшении диссоциация кислоты падает, а диссоциация оснований повышается. При высоком уровне pH увеличивается диссоциация кислот.

Эта особенность нашла применение при выводе ядовитых веществ: при отравлении в кровь вводят препараты, защелачивающие ее, что увеличивает степень диссоциации кислот и помогает вывести их с мочой.

Петля Генле

Если в проксимальном канальце ионы металлов и вода реабсорбируются практически в одинаковых долях, то в петле Генле всасывается в основном натрий и хлор. Воды же поглощается от 10 до 25%.

В петле Генле реализуется поворотно-протипоточный механизм, основанный на особенности расположения нисходящей и восходящей части. Нисходящая часть не поглощает натрий и хлор, но остается проницаемой для воды. Восходящая всасывает ионы, но для воды оказывается непроницаемой. В итоге всасывание хлорида натрия восходящей частью определяет степень поглощения воды нисходящей частью.

Первичный фильтрат попадает в начальную часть нисходящей петли, где осмотическое давление ниже по сравнению с давлением межклеточной жидкости. Моча спускается по петле, отдавая воду, но сохраняя ионы натрия и хлора.

Поскольку вода выводится, осмотическое давление в фильтрате растет и достигает максимального значения в поворотной точке. Затем моча следует по восходящему участку, сохраняя воду, но теряя ионы натрия и хлора. В дистальный каналец моча попадает гипоосмотическая – до 100–200 мосм/л.

По сути, в нисходящем отделе петли Генле моча концентрируется, а в восходящей – разводится.

На видео строение петли Гентле:

Дистальная

Дистальный каналец слабо пропускает воду, а органические вещества здесь вовсе не всасываются. В этом отделе производится дальнейшее разведение. В дистальный каналец попадает около 15% первичной мочи, а выводится около 1%.

По мере перемещения по дистальному канальцу она становится все более гиперосмотичной, поскольку здесь поглощаются в основном ионы и частично вода – не более 10%. Разведение продолжается в собирательных трубках, где и формируется конечная моча.

Особенностью работы этого сегмента является возможность регулировки процесса всасывания воды и ионов натрия. Для воды регулятором является антидиуретический гормон, а для натрия – альдостерон.

Норма

Для оценки функциональности почки используются различные параметры: биохимический состав крови и мочи, величина концентрационной способности, а также парциальные показатели. К последним и относят и показатели канальцевой реабсорбции.

Скорость клубочковой фильтрации – указывает на выделительные способности органа, это скорость фильтрации первичной мочи, не содержащей белок, через клубочковый фильтр.

Канальцевая реабсорбция указывает на всасывающие способности. Обе эти величины не постоянны и изменяются в течение суток.

Норма СКФ – 90–140 мл/мин. Наиболее высок ее показатель днем, снижается к вечеру, а утром находится на самом низком уровне. При физической нагрузке, потрясениях, почечной или сердечной недостаточности и других недугах СКФ падает. Может увеличиваться на начальных стадиях сахарного диабета и при гипертонии.

Канальцевая реабсорбция не измеряется непосредственно, а рассчитывается как разность между СКФ и минутным диурезом по формуле:

Р = (СКФ – Д) x 100 / СКФ, где,

  • СКФ – скорость клубочковой фильтрации;
  • Д – минутный диурез;
  • Р – канальцевая реабсорбция.

При снижении объема крови – операция, потеря крови, наблюдается повышение канальцевой реабсорбции в сторону роста. На фоне приема диуретиков, при некоторых почечных недугах – уменьшается.

Нормой для канальцевой реабсорбции является 95–99%. Отсюда и столь большая разница между объемом первичной мочи – до 180 л, и объемом вторичной – 1–1,5 л.

Для получения этих величин прибегают к пробе Реберга. С ее помощью вычисляют клиренс – коэффициент очищения эндогенного креатинина.По этому показателю вычисляют СКФ и величину канальцевой реабсорбции.

Пациент удерживается в лежачем положении на протяжении 1 часа. За это время собирается моча. Анализ проводится натощак.

Через полчаса из вены берут кровь.

Затем в моче и крови находят количество креатинина и вычисляют СКФ по формуле:

СКФ = М x Д / П, где

  • М – уровень креатинина в моче;
  • П – уровень вещества в плазме
  • Д – минутный объем мочи. Рассчитывается делением объема на время выделения.

По данным можно классифицировать степень повреждения почки:

  • Уменьшение скорости фильтрации до 40 мл/мин является признаком почечной недостаточности.
  • Уменьшение СКФ до 5–15 мл/мин свидетельствует о терминальной стадии недуга.
  • Уменьшение КР обычно следует после водной нагрузки.
  • Рост КР связан с уменьшением объема крови. Причиной может быть потеря крови, а также нефриты – при таком недуге повреждается клубочковый аппарат.

Нарушение канальцевой реабсорбции

Регуляция канальцевой реабсорбции

Кровообращение в почках выступает процессом относительно автономным. При изменениях АД от 90 до 190 мм. рт. ст. давление в почечных капиллярах удерживается на обычном уровне. Объясняется такая стабильность разницей в диаметре между приносящими и выносящими кровеносными сосудами.

Выделяют два наиболее значимых метода: миогенная ауторегуляция и гуморальная.

Миогенная – при росте АД стенки приносящих артериол сокращаются, то есть, в орган поступает меньший объем крови и давление падает. Сужение чаще всего вызывает ангиотензин II, таким же образом воздействуют тромбоксаны и лейкотриены. Сосудорасширяющими веществами выступают ацетилхолин, дофамин и так далее. В результате их действия нормализуется давление в клубочковых капиллярах с тем, чтобы удерживать нормальный уровень СКФ.

Гуморальная – то есть, при помощи гормонов. По сути, главным показателем канальцевой реабсорбции выступает уровень всасывания воды. Процесс этот можно разделить на 2 этапа: обязательный – тот, что проводится в проксимальных канальцах и независим от водной нагрузки, и зависимый – реализуется в дистальных канальцах и собирательных трубочках. Этот этап регулируется гормонами.

Главный среди них – вазопрессин, антидиуретический гормон. Он сохраняет воду, то есть, способствует задержке жидкости. Синтезируется гормон в ядрах гипоталамуса, перемещается в нейрогипофиз, а оттуда попадает в кровоток. В дистальных отделах имеются рецепторы к АДГ. Взаимодействие вазопрессина с рецепторами приводит к улучшению проницаемости мембран для воды, благодаря чему она поглощается лучше. При этом АДГ не только увеличивает проницаемость, но и определяет уровень проницаемости.

За счет разницы давлений в паренхиме и дистальном канальце вода из фильтрата остается в теле. Но на фоне низкой всасываемости ионов натрия диурез может оставаться высоким.

Всасывание ионов натрия регламентирует альдостерон – , а также натрийуретический гормон.

Альдестерон способствует канальцевой реабсорбции ионов и образуется при снижении уровня ионов натрия в плазме. Гормон регулирует создание всех требуемых для переноса натрия механизмов: канала апикальной мембраны, переносчика, составляющих натрий-калиевого насоса.

Особенно сильно его воздействие на участке собирательных трубочек. «Работает» гормон как в почках, так и в железах, и в ЖКТ, улучшая всасывание натрия. Также альдостерон регулирует чувствительность рецепторов к АДГ.

Альдостерон появляется и по другой причине. При снижении АД синтезируется ренин – вещество, контролирующее тонус сосудов. Под влиянием ренина аг-глобулин из крови трансформируется в ангиотензин I, а затем в ангиотензин II. Последний выступает сильнейшим сосудосуживающим веществом. Кроме того, он запускает выработку альдостерона, обуславливающего реабсорбцию ионов натрия, что вызывает задержку воды. Этот механизм – задержка воды и сужение сосудов, создает оптимальное АД и нормализует кровоток.

Натрийуретический гормон образуется в предсердии при его растяжении. Оказавшись в почках, вещество уменьшает реабсорбцию ионов натрия и воды. При этом количество воды, которое попадает во вторичную мочу увеличивается, что уменьшает общий объем крови, то есть, растяжение предсердий исчезает.

Кроме того, на уровень канальцевой реабсорбции оказывают воздействие и другие гормоны:

  • паратгормон – улучшает всасывание кальция;
  • тиреокальцийтонин – снижает уровень реабсорбции ионов этого металла;
  • адреналин – его влияние зависит от дозы: при малом количестве адреналин снижает СКФ фильтрацию, в большой дозе – здесь канальцевая реабсорбция повышена;
  • тироксин и соматропный гормон – усиливают диурез;
  • инсулин – улучшает поглощение ионов калия.

Механизм влияния разный. Так, пролактин повышает проницаемость клеточной мембраны для воды, а паратирин изменяет осмотический градиент интерстиция, тем самым влияя на осмотический транспорт воды.

Канальцевая реабсорбция – механизм, обуславливающий возвращение воды, микроэлементов и питательных веществ в кровь. Осуществляется возврат — реабсорбция, на всех участках нефрона, но по разным схемам.

До 80% профильтровавшегося натрия реабсорбируется в проксимальных сегментах канальцев, тогда как в дистальных сегментах и собирательных трубках его всасывается около 8 — 10%.

В проксимальном сегменте натрий всасывается с эквивалентным количеством воды, поэтому содержимое канальца остается изоосмотичным. В проксимальных отделах высока проницаемость и для натрия, и для воды. Через апикальную мембрану натрий входит в цитоплазму пассивно по градиенту электрохимического потенциала. Далее натрий движется по цитоплазме к базальной части клетки, где находятся натриевые насосы (Na-K-АТФаза, зависимая от Mg).

Пассивная реабсорбция ионов хлора происходит в зонах клеточных контактов, которые проницаемы не только для хлора, но и для воды. Проницаемость межклеточных промежутков не является строго постоянной величиной, она может меняться при физиологических и патологических состояниях.

В нисходящей части петли Генле натрий и хлор практически не всасываются.

В восходящей части петли Генле функционирует иной механизм всасывания натрия и хлора. На апикальной поверхности расположена система переноса в клетку ионов натрия, калия и двух ионов хлора. На базальной поверхности также имеются Na-K-насосы.

В дистальном сегменте ведущим механизмом реабсорбции солей является Na-насос, который обеспечивает реабсорбцию натрия против высокого концентрационного градиента. Здесь всасывается около 10% натрия. Реабсорбция хлора происходит независимо от натрия и пассивно.

В собирательных трубках транспорт натрия регулируется альдостероном. Натрий входит по натриевому каналу, движется к базальной мембране и переносится во внеклеточную жидкость Na-K-АТФазой.

Альдостерон действует на дистальные извитые канальцы и начальные отделы собирательных трубок.

Транспорт калия

В проксимальных сегментах всасывается 90-95% профильтровавшегося калия. Часть калия всасывается в петле Генле. Выделение калия с мочой зависит от его секреции клетками дистального канальца и собирательных трубок. При избыточном поступлении калия в организм его реабсорбция в проксимальных канальцах не снижается, но резко увеличивается секреция в дистальных канальцах.

При всех патологических процессах, сопровождающихся снижением фильтрационной функции, отмечается значительное увеличение секреции калия в канальцах почек.

В одной и той же клетке дистального канальца и собирательных трубок существуют системы реабсорбции и секреции калия. При дефиците калия они обеспечивают максимальное извлечение калия из мочи, а при избытке — его секрецию.

Секреция калия через клетки в просвет канальца является пассивным процессом, происходящим по концентрационному градиенту, а реабсорбция — активным. Усиление секреции калия под влиянием альдостерона связано не только с действием последнего на проницаемость калия, но и с увеличением поступления калия в клетку вследствие усиления работы Na-K-насоса.

Другим важным фактором регуляции транспорта калия в канальцах является инсулин, уменьшающий экскрецию калия. Большое влияние на уровень выделения калия оказывает состояние кислотно-щелочного равновесия. Алкалоз сопровождается увеличением выделения калия почкой, а ацидоз приводит к уменьшению калийуреза.

Транспорт кальция

Почки и кости играют главную роль в поддержании стабильного уровня кальция в крови. В сутки потребление кальция составляет около 1 г. Кишечником выделяется 0,8, почками — 0,1-0,3 г/сут. В клубочках фильтруется ионизированный кальций и находящийся в виде низкомолекулярных комплексов. В проксимальных канальцах реабсорбируется 50% профильтровавшегося кальция, в восходящем колене петли Генле — 20-25%, в дистальных канальцах — 5-10, в собирательных трубках — 0,5-1,0%.

Секреции кальция у человека не происходит.

В клетку кальций поступает по градиенту концентрации и сосредоточивается в эндоплазматическом ретикулуме и в митохондриях. Из клетки кальций выводится двумя путями: с помощью кальциевого насоса (Са-АТФаза) и Na/Ca обменника.

В клетке почечного канальца должна быть особенно эффективная система стабилизации уровня кальция, так как он непрерывно поступает через апикальную мембрану, а ослабление транспорта в кровь нарушило бы не только баланс кальция в организме, но и повлекло бы патологические изменения в самой клетке нефрона.

    Гормоны, регулирующие транспорт кальция в почке:

  • Паратгормон
  • Тирокальцитонин
  • Соматотропный гормон

Среди гормонов, регулирующих транспорт кальция в почке, наибольшее значение имеет паратгормон. Он уменьшает реабсорбцию кальция в проксимальном канальце, однако при этом снижается его экскреция почкой вследствие стимуляции всасывания кальция в дистальном сегменте нефрона и собирательных трубках.

В противоположность паратгормону тирокальцитонин вызывает увеличение экскреции кальция почкой. Активная форма витамина D3 увеличивает реабсорбцию кальция в проксимальном сегменте канальца. Соматотропный гормон способствует усилению кальцийуреза, именно поэтому у больных с акромегалией часто развивается мочекаменная болезнь.

Транспорт магния

Здоровый взрослый человек с мочой за сутки выделяет 60-120 мг магния. До 60% профильтровавшегося магния реабсорбируется в проксимальных канальцах. Большое количество магния реабсорбируется в восходящем колене петли Генле. Реабсорбция магния является активным процессом и ограничена величиной максимального канальцевого транспорта. Гипермагниемия приводит к усилению экскреции магния почкой и может сопровождаться преходящей гиперкальциурией.

При нормальном уровне клубочковой фильтрации почка быстро и эффективно справляется с повышением уровня магния в крови, предотвращая гипермагниемию, поэтому клиницисту чаще приходится встречаться с проявлениями гипомагниемии. Магний, как и кальций, не секретируется в канальцах почек.

Скорость экскреции магния возрастает при остром увеличении объема внеклеточной жидкости, при увеличении тирокальцитонина и АДГ. Паратгормон уменьшает выделение магния. Однако гиперпаратиреоидизм сопровождается гипомагниемией. Это, вероятно, связано с гиперкальциемией, которая увеличивает экскрецию не только кальция, но и магния в почках.

Транспорт фосфора

Почки играют ключевую роль в поддержании постоянства фосфатов в жидкостях внутренней среды. В плазме крови фосфаты представлены в виде свободных (около 80%) и связанных с белками ионов. За сутки через почки выделяется около 400-800 мг неорганического фосфора. 60-70% фильтруемых фосфатов всасывается в проксимальных канальцах, 5-10% — в петле Генле и 10-25% — в дистальных канальцах и собирательных трубках. Если резко снижена транспортная система проксимальных канальцев, то начинает использоваться большая мощность дистального сегмента нефрона, который может предотвратить фосфатурию.

В регуляции канальцевого транспорта фосфатов основная роль принадлежит гормону паращитовидных желез, который угнетает реабсорбцию в проксимальных сегментах нефрона, витамину D3, соматотропному гормону, которые стимулируют реабсорбцию фосфатов.

Транспорт глюкозы

Глюкоза, прошедшая через клубочковый фильтр, практически полностью реабсорбируется в проксимальных сегментах канальцев. За сутки может выделяться до 150 мг глюкозы. Реабсорбция глюкозы осуществляется активно с участием ферментов, затратой энергии и потреблением кислорода. Глюкоза проходит через мембрану вместе с натрием против высокого концентрационного градиента.

В клетке происходят накопление глюкозы, фосфорилирование ее до глюкозо-6-фосфата и пассивный перенос в околоканальцевую жидкость.

Полная реабсорбция глюкозы происходит лишь в тех случаях, когда количество переносчиков и скорость их движения через клеточную мембрану обеспечивают перенос всех молекул глюкозы, поступивших в просвет проксимальных отделов канальцев из почечных телец. Максимальное количество глюкозы, которое в состоянии реабсорбироваться в канальцах при полной загрузке всех переносчиков, в норме у мужчин составляет 375 ± 80, у женщин — 303 ± 55 мг/мин.

Уровень глюкозы в крови, при котором она появляется в моче, равен 8-10 ммоль/л.

Транспорт белка

В норме профильтровавшийся в клубочках белок (до 17-20 г/сут) практически весь реабсорбируется в проксимальных сегментах канальцев и в суточной моче обнаруживается в незначительном количестве — от 10 до 100 мг. Канальцевый транспорт белка — процесс активный, в нем принимают участие протеолитические ферменты. Реабсорбция белка осуществляется путем пиноцитоза в проксимальных сегментах канальцев.

Под воздействием протеолитических ферментов, содержащихся в лизосомах, белок подвергается гидролизу с образованием аминокислот. Проникая через базальную мембрану, аминокислоты поступают в около- канальцевую внеклеточную жидкость.

Транспорт аминокислот

В клубочковом фильтрате концентрация аминокислот такая же, как и в плазме крови, — 2,5-3,5 ммоль/л. В норме обратному всасыванию подвергается около 99% аминокислот, причем этот процесс происходит в основном в начальных отделах прокси-мального извитого канальца. Механизм реабсорбции аминокислот подобен описанному выше для глюкозы. Имеется ограниченное количество переносчиков, и когда все они соединяются с соответствующими аминокислотами, избыток последних остается в канальцевой жидкости и выводится с мочой.

В норме моча содержит лишь следы аминокислот.

    Причинами аминоацидурии являются:

  • увеличение концентрации аминокислот в плазме при повышенном поступлении в организм и при нарушении их метаболизма, что приводит к перегрузке транспортной системы канальцев почек и аминоацидурии
  • дефект переносчика, обеспечивающего реабсорбцию аминокислоты
  • дефект апикальной мембраны клеток канальцев, что приводит к увеличению проницаемости щеточной каемки и зоны межклеточных контактов. В результате отмечается обратный ток аминокислот в каналец
  • нарушение метаболизма клеток проксимального канальца

Канальцевая реабсорбция - это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь.

Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода.

Альдостерон стимулирует реабсорбцию Na+ и экскрецию K+ и H+ в почечные канальцы в дистальном отделе нефрона, в дистальном канальце и кортикальных собирательных трубочках .

Вазопрессин способствует реабсорбции воды из дистальных извитых канальцев и собирательных трубок.

С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+/K+-АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Величине максимального канальцевого транспорта соответствует старое понятие "почечный порог выведения". Для глюкозы эта величина составляет 10 ммоль/л.

Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, пример, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

Мочевина играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления. Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом, совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом, ее экскреция зависит от диуреза.

Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся - в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой. Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

Вода реабсорбируется во всех отделах нефрона пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (полиурии).

Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи.

Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+/K+-АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них - это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода - наружу. Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.

Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+/К+-АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.

Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы. После прохождения проксимального отрезка канальца изотоничный фильтрат в уменьшенном объеме поступает в петлю Генле. В этом участке интенсивная реабсорбция натрия не сопровождается реабсорбцией воды, так как стенки этого отрезка мало проницаемы для воды даже под воздействием АДГ. В связи с этим наступают разведение мочи в просвете нефрона и концентрация натрия в интерстиции. Разведенная моча в дистальном отделе канальца теряет избыток жидкости, становясь изотоничной плазме. Уменьшенный объем изотоничной мочи поступает в собирательную систему, идущую в мозговом слое, высокое осмотическое давление в интерстиции которого обусловлено повышенной концентрацией натрия. В собирательных трубочках под влиянием АДГ продолжается обратное всасывание воды в соответствии с концентрационным градиентом. Проходящие в мозговом слое vasa recta функционируют как противоточно-обменные сосуды, забирающие по пути к сосочкам натрий и отдающие его до возвращения к корковому слою. В глубине мозгового слоя таким путем поддерживается высокое содержание натрия, обеспечивающее резорбцию воды из собирательной системы и концентрацию мочи.

Подробности

Реабсорбция – это транспорт веществ из просвета почечных канальцев в кровь , протекающую через околоканальцевые капилляры. Реабсорбируется 65% от объема первичной мочи (примерно 120 л/сутки. Было 170 л, выделилось 1.5): вода, минеральные соли, все необходимые органические компоненты, (глюкоза, аминокислоты). Транспорт пассивный (осмос, диффузия по электрохимическому градиенту) и активный (первично-активный и вторично-активный с участием белковых молекул-переносчиков). Транспортные системы такие же, как и в тонком кишечнике.

Пороговые вещества – обычно полностью реабсорбируются (глюкоза, аминокислоты) и выделяются с мочой только если их концентрация в плазме крови превышает пороговую величину (так называемый «порог выведения»). Для глюкозы порог выведения 10 ммоль/л (при нормальной концентрации глюкозы в крови 4.4-6.6 ммоль/л).

Беспороговые вещества – всегда выводятся независимо от их концентрации в плазме крови . Они не реабсорбируются или реабсорбируются частично, например, мочевина и др. метаболиты.

Механизм работы различных отделов почечного фильтра.

1. В проксимальном канальце берет свое начало процесс концентрирования клубочкового фильтрата, причем наиболее важным моментом здесь является активное поглощение солей. С помощью активного транспорта из данного участка канальца обратно всасывается около 67% Na+. Почти пропорциональное количество воды и некоторых других растворенных веществ, например ионов хлора, следует за ионами натрия пассивно. Таким образом, прежде чем фильтрат достигнет петли Генле, из него реабсорбирустся около 75% веществ. В результате канальцевая жидкость становится изоосмотической по отношению к плазме крови и тканевым жидкостям.

Проксимальный каналец идеально приспособлен для интенсивной реабсорбции соли и воды . Многочисленные микроворсинки эпителия образуют так называемую щеточную кайму, покрывающую внутреннюю поверхность просвета почечного канальца. При таком устройстве абсорбирующей поверхности чрезвычайно увеличивается площадь клеточной мембраны и в результате облегчается диффузия соли и воды из просвета канальца в эпителиальные клетки.

2. Нисходящее колено петли Генле и часть восходящего колена , расположенная во внутреннем слое мозгового вещества , состоят из очень тонких клеток, у которых нет щеточной каймы, а число митохондрий мало. Морфология тонких участков нефрона свидетельствует об отсутствии здесь активного переноса растворенных веществ через стенку канальца. На данном участке нефрона NaCl очень плохо проникает сквозь стенку канальца, мочевина - несколько лучше, а вода проходит без затруднений.

3. Стенка тонкого участка восходящего колена петли Генле также неактивна в отношении транспорта соли. Тем не менее она обладает высокой проницаемостью для Na+ и Сl-, но малопроницаема для мочевины и почти непроницаема для воды.

4. Толстый участок восходящего колена петли Генле , расположенный в мозговом веществе почки, отличается от остальных участков указанной петли. Он осуществляет активный перенос Na+ и Cl- из просвета петли в интерстициальное пространство. Этот участок нефрона вместе с остальной частью восходящего колена чрезвычайно мало проницаем для воды. Из-за реабсорбции NaCl жидкость поступает в дистальный каналец несколько гипоосмотичной по сравнению с тканевой жидкостью

5. Движение воды через стенку дистального канальца - процесс сложный. Дистальный каналец имеет особое значение для транспорта К+, Н+ и NH3 из тканевой жидкости в просвет нефрона и транспорта Na+, Cl- и Н2О из просвета нефрона в тканевую жидкость. Поскольку соли активно "выкачиваются" из просвета канальца, вода следует за ними пассивно.

6. Собирательный проток проницаем для воды, что позволяет ей переходить из разбавленной мочи в более концентрированную тканевую жидкость мозгового вещества почки. В этом заключается конечная стадия образования гиперосмотической мочи. В протоке происходит также реабсорбция NaCl, но за счет активного переноса Na+ через стенку. Для солей собирательный проток непроницаем, в отношении воды его проницаемость меняется. Важной особенностью дистального участка собирательного протока, расположенного во внутреннем мозговом слое почек, является его высокая проницаемость для мочевины.

Механизм реабсорбции глюкозы.

Проксимальная (1/3) реабсорбция глюкозы осуществляется с помощью специальных переносчиков щеточной каемки апикальной мембраны эпителиальных клеток . Эти переносчики транспортируют глюкозу, только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту концентрации внутрь клеток ведет к транспорту через мембрану и переносчика с глюкозой.

Для реализации этого процесса необходима низкая концентрация натрия в эпителиальной клетке, создающая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-калиевого насоса базальной мембраны .

Такой вид транспорта называют вторично активным, или симпортом , т. е. совместным пассивным транспортом одного вещества (глюкоза) из-за активного транспорта другого (натрия) с помощью одного переносчика. При избытке глюкозы в первичной моче может произойти полная загрузка всех молекул переносчиков и глюкоза уже не сможет всасываться в кровь.

Эта ситуация характеризуется понятием «максимальный канальцевый транспорт вещества » (Тм глюкозы), которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в первичной моче и, соответственно, в крови. Эта величина составляет от 303 мг/мин у женщин до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует понятие «почечный порог выведения».

Почечным порогом выведения называют ту концентрацию вещества в крови и, соответственно, в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче. Такие вещества, для которых может быть найден порог выведения, т. е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях - не полностью, носят название пороговых. Примером является глюкоза, которая полностью всасывается из первичной мочи при концентрациях в плазме крови ниже 10 ммоль/л, но появляется в конечной моче, т. е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 ммоль/л. Следовательно, для глюкозы порог выведения составляет 10 ммоль/л .

Механизмы секреции в почечном фильтре.

Секреция - это транспорт веществ из крови , протекающей через околоканальцевые капилляры, в просвет почечных канальцев. Транспорт пассивный и активный. Секретируются ионы Н+, К+, аммиак, органические кислоты и основания (например, чужеродные вещества, в частности, лекарственные препараты: пенициллин и др). Секреция органических кислот и оснований происходит с помощью вторично-активного натрий-зависимого механизма.

Секреция йонов калия.

Большая часть легко фильтрующихся в клубочках ионов калия обычно реабсорбируется из фильтрата в проксимальных канальцах и петлях Генлe . Скорость активной реабсорбции в канальце и петле не снижается даже в том случае, когда концентрация К+ в крови и фильтрате сильно возрастает в ответ на избыточное потребление организмом этого иона.

Однако дистальные канальцы и собирательные протоки способны не только реабсорбировать, но и секретировать ионы калия . Секретируя калий, данные структуры стремятся достичь ионного гомеостаза в случае поступления в организм необычайно большого количества этого металла. Транспорт К+, по-видимому, зависит от его постуления в клетки канальцев из тканевой жидкости, обусловленного активностью обычного Nar+ - Ka+-насоса, с утечкой К+ из цитоплазмы в канальцевую жидкость. Калий может просто диффундировать по электрохимическому градиенту из клеток почечных канальцев в просвет, потому что канальцевая жидкость электроотрицательна по отношению к цитоплазме. Секреция К+ с помощью данных механизмов стимулируется адренокортикальным гормоном-альдостероном, который высвобождается в ответ на повышение содержания К+ в плазме крови.

Первичная моча, проходя по канальцах и уборочных трубочках, перед тем как превратиться в конечную мочу, претерпевает значительные изменения. Разница состоит не только в ее количестве (с 180 л остается 1-1,5 л), но и качества. Некоторые вещества, нужные организму, полностью исчезают из мочи или их становится гораздо меньше. Происходит процесс реабсорбции. Концентрация других веществ во много раз увеличивается: они концентрируются при реабсорбции воды. Еще другие вещества, которых вообще не было в первичной мочи,
появляются в конечной. Это происходит в результате их секреции.
Процессы реабсорбции могут быть активными или пассивными. Для осуществления активного процесса необходимо, чтобы были специфические транспортные системы и энергия. Пассивные процессы происходят, как правило, без затраты энергии по законам физики и химии.
Канальцевая реабсорбция происходит во всех отделах, но ее механизм в разных частях неодинакова. Условно можно выделить С отделы: проксимальный извитой каналец, петля нефрона и дистальный извитой каналец С уборочной трубочкой.
В проксимальных извитых канальцах полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы. В этом же отделе реабсорбируется около 2/3 воды и неорганических солей Na +, К + Са2 +, Mg2 +, Cl-, НС07, т.е. вещества, которые нужны организму для его деятельности. Механизм реабсорбции главным образом прямо или косвенно связан с реабсорбцией Na +.
Реабсорбция натрия. Большая часть Na + реабсорбируется против градиента концентрации за счет энергии АТФ. Реабсорбция Na + осуществляется в 3 этапа: перенос иона через апикальную мембрану эпителиальных клеток канальцев, транспортировки в базальной или латеральной мембраны и перенос через указанные мембраны в межклеточную жидкость и в кровь. Основной движущей силой реабсорбции является перенос Na + с помощью Na +, К +-АТФ-азы
через базолатерального мембрану. Это обеспечивает постоянное отток ионов с кдитин. Вследствие этого Na + по градиенту концентрации с помощью специальных образований эндоплазматического ретикулума поступает к мембранам, возвращенных в межклеточной среды.
Вследствие этого постоянно действующего конвейера концентрация ионов внутри клетки и особенно вблизи апикальной мембраны становится гораздо ниже, чем с другой ее стороны, это способствует пассивному поступлению Na + в клетку по ионному градиенту. Таким образом,
2 этапа натриевой реабсорбции клетками канальцев являются пассивными и только один, конечный, требует затрат энергии. Кроме того, часть Na + реабсорбируется пассивно по межклеточных промежутках вместе с водой.
Глюкоза. Глюкоза реабсорбируется вместе с транспортом Na + В апикальной мембране клеток есть специальные транспортеры. Это белки
3 молекулярной массой 320 000, которые в начальных отделах проксимального канальца переносят друг Na + и одну молекулу глюкозы (постепенное уменьшение концентрации глюкозы в моче приводит к тому, что в следующей области канальца для переноса одной молекулы глюкозы используется уже два Na +). Движущей силой этого процесса является также электрохимический градиент Na + На противоположной стороне клетки комплекс Na - глюкоза - переносчик распадается на три элемента. Вследствие этого освобожден переносчик возвращается на свое прежнее место и снова приобретает способность переносить новые комплексы Na + и глюкозы. В клетке концентрация глюкозы увеличивается, благодаря чему образуется градиент концентрации, который направляет его в базально-латеральных мембран клетки и обеспечивает выход в межклеточную жидкость. Отсюда глюкоза поступает в кровеносные капилляры и возвращается в общий кровоток. Апикальная мембрана не пропускает глюкозу обратно в просвет канальца. Транспортные переносчики глюкозы содержатся лишь в проксимальном отделе канальцев, поэтому глюкоза реабсорбируется только здесь.
В норме при обычном уровне глюкозы в крови, а следовательно и концентрации ее в первичной мочи, реабсорбируется вся глюкоза. Однако при повышении уровня глюкозы в крови более 10 ммоль / л (около 1,8 г / л) мощность транспортных систем становится недостаточной для реабсорбции.
Первые следы нереабсорбованои глюкозы в конечной моче обнаруживаются при превышении его концентрации в крови. Чем выше концентрация глюкозы в крови, тем большее количество нереабсорбованои глюкозы.
До концентрации ее 3,5 г / л это увеличение еще не прямо пропорционально, поскольку в процесс еще не включается часть транспортеров. Но, начиная с уровня 3,5 г / л, выведение глюкозы с мочой становится лрямо пропорционален концентрации ее в крови. У мужчин полная нагрузка системы реабсорбции наблюдается при поступлении 2,08 ммоль / мин (375 мг / мин) глюкозы, а у женщин-1, 68 ммоль / мин (303 мг / мин) из расчета на 1,73 м2 поверхности тела.
При неушкодж? Них почках появление глюкозы в моче, например при сахарном диабете, является следствием превышения пороговой концентрации (10 ммоль / л) глюкозы в крови.
Аминокислоты. Реабсорбция аминокислот происходит по такому же механизму, как и реабсорбция глюкозы. Полная реабсорбция аминокислот происходит уже в начальных отделах проксимальных канальцев. Этот процесс таксйк связан с активной реабсорбцией Na + через апикальную мембрану клеток. Выявлено 4 типа транспортных систем: а) для основных б) для кислых в) для гидрофильных г) для гидрофобных аминокислот. С клетки аминокислоты пассивно по градиенту концентрации проходят через базальную мембрану в межклеточную жидкость, а оттуда - в кровь. Появление аминокислот в моче может быть следствием нарушения транспортных систем или очень высокой концентрации его в крови. В последнем случае может проявляться эффект, который по механизму напоминает глюкозурию - перегрузка транспортных систем. Иногда наблюдается конкуренция кислот одного типа за общий переносчик.
Белки. Механизм реабсорбции белков значительно отличается от механизма реабсорбции описанных соединений. Попадая в первичную 0, ечу, небольшое количество белков в норме почти полностью реабсорбируется путем пиноцитоза. В цитоплазме клеток проксимальных канальцев белки распадаются при участии лизосомальных ферментов. Аминокислоты, которые образуются, по градиенту концентрации из клетки поступают в межклеточную жидкость, а оттуда - в кровеносные капилляры. Таким путем может реабсорбуватися до 30 мг белка за 1 мин. При повреждении клубочков в фильтрат попадает больше белков и часть может поступать в мочу (протеинурия).
Реабсорбция воды. Процессы реабсорбции воды происходит во всех отделах нефрона. Но механизмы реабсорбции в различных отделах разные. В проксимальных извитых канальцах реабсорбируется около% воды. Около 15% первичной мочи реабсорбируется в петле нефрона и 15%-в дистальных извитых канальцах и собирательных трубочках. В конечной мочи, как правило, остается только 1% воды первичного фильтрата. Причем в первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется. В дистальных отделах реабсорбция регулируется в зависимости от потребности организма: вода, которая попала сюда, может задерживаться в организме или выводиться с мочой.
В основе реабсорбции воды в проксимальных канальцах лежат процессы осмоса. Вода реабсорбируется вслед за ионами. Основным ионом, обеспечивающим пассивное всасывание воды, является Na +. Реабсорбция других веществ (углеводов, аминокислот и др.)., Которая осуществляется в этих отделах нефрона, также способствует всасыванию воды.
Реабсорбция воды и электролитов в петле нефрона (поворотно-протипоточний механизм). Вследствие указанных изменений в петлю нефрона поступает моча, которая является изотоническим по окружающей межклеточной жидкости. Механизм реабсорбции воды и Na + и Сl-в данном участке нефрона существенно отличается от такового в других отделах. Здесь вода реабсорбируется согласно механизму поворотно-протипоточнои системы. В ее основе лежат особенности расположения восходящих и нисходящих частей в непосредственной близости друг от друга. Параллельно с этим вглубь мозгового вещества идут уборочные трубочки и кровеносные капилляры.
Поворотно-протипоточний механизм определяется следующими функциональными характеристиками почек: а) глубже в мозговое вещество опускается петля нефрона, тем выше становится осмотическое давление окружающей межклеточной жидкости (с 300 мосм / л в корковом веществе почки в 1200-1450 мосм / л на верхушке сосочка) б) восходящий отдел не достаточно проницаем для воды в) эпителий восходящего отдела активно, с помощью транспортных систем, скачивает Na + и Си-г
Активное выкачивание NaCl эпителия восходящего отдела обусловливает повышение осмотического давления межклеточной жидкости. Благодаря этому вода диффундирует сюда нисходящего отдела петли нефрона. В начальный отдел нисходящей части поступает фильтрат, который имеет низкий осмотическое давление по сравнению с окружающей веществом. Моча по мере спуска по нисходящему отдела, отдавая воду, имеет постоянный осмотический градиент между фильтратом и межклеточной жидкостью. Поэтому вода оставляет фильтрат в области нисходящего колена, чем обеспечивается здесь реабсорбция около 15% объема первичной мочи. Кроме того, в формировании осмолярности фильтрата петли нефрона определенное значение принадлежит моче, которая может сюда попасть при повышении его концентрации в паренхиме почки.
В связи с выходом воды осмотическое давление мочи постепенно растет и достигает своего максимума в области поворота петли нефрона. Гиперосмотические моча поднимается по восходящему отдела, где, как указывалось выше, теряет Na + и С1-, которые выводятся благодаря активному функционированию транспортных систем. Поэтому в дистальные извитые канальцы фильтрат поступает даже гипоосмотическими (около 100-200 мосм / л). Таким образом, в нисходящем колене происходит процесс концентрирования мочи, а в восходящем - ее разведения.
Особенности функционирования отдельных нефронов во многом зависят от длины петли нефрона и выраженности нисходящего и восходящего отделов. Чем дольше петля (юкстамедулярни нефроны), то более выраженные процессы концентрации мочи.
В дистальные извитые канальцы и собирательные трубочки чаще поступает около 15% объема первичного фильтрата. Но в конечной моче, как правило, остается лишь 1% первичного фильтрата. В первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется (облигатная реабсорбция). В дистальных отделах реабсорбция регулируется с учетом потребностей организма: вода, поступившая сюда, может задерживаться в организме или выводиться с мочой (факультативная реабсорбция). Регулюетеся она гормонами, образование которых зависит от водного и ионного состояния организма.

Загрузка...